Comparative study of the factors that influence Behavioral Intentions in DANA and OVO users

Authors

  • Fahri Fahri Fakultas Ekonomi dan Bisnis, Universitas Tanjungpura Pontianak
  • Nur Afifah Fakultas Ekonomi dan Bisnis, Universitas Tanjungpura Pontianak
  • Juniwati Juniwati Fakultas Ekonomi dan Bisnis, Universitas Tanjungpura
  • Bintoro Bagus Purmono Fakultas Ekonomi dan Bisnis, Universitas Tanjungpura
  • Ahmadi Ahmadi Fakultas Ekonomi dan Bisnis, Universitas Tanjungpura

DOI:

https://doi.org/10.53088/jmdb.v5i1.1332

Keywords:

Compatibility, Ubiquity, Social Influence, E-Wallet

Abstract

This study compares DANA and OVO users in West Kalimantan to investigate the factors affecting e-wallet adoption. To ascertain the impact of compatibility, ubiquity, and social influence on behavioral intention with trust and satisfaction as intervening variables. Data was gathered from 300 respondents using a quantitative comparison approach and analyzed using PLS-SEM. The findings demonstrated that compatibility significantly affects trust and satisfaction, particularly for DANA users, raising their behavioral intention. On the other hand, there was no discernible variation in the impact of ubiquity on satisfaction. Furthermore, social influence had a different effect on trust in the two user groups, with DANA users being more affected. These findings emphasize compatibility and trust in promoting e-wallets, although ubiquity and social influence still need more study.

References

Actavianus, J. R., & Purmono, B. B. (2023). The influence of service quality on loyalty through customer satisfaction and trust as intervening variables in pt. Bpr universal kalbar (Vol. 45, Issue 1). https://journal.barasaki.com/index.php/jemba

Ajzen, I. , & F. M. (1980). Understanding attitudes and predicting social behavior. Prentice-Hall.

Al-Saedi, K., Al-Emran, M., Ramayah, T., & Abusham, E. (2020). Developing a general extended UTAUT model for M-payment adoption. Technology in Society, 62, 101293. https://doi.org/10.1016/j.techsoc.2020.101293

Aristio, A. P., Supardi, S., Hendrawan, R. A., & Hidayat, A. A. (2019). Analysis on purchase intention of Indonesian backpacker in accommodation booking through online travel agent. Procedia Computer Science, 161, 885–893. https://doi.org/10.1016/j.procs.2019.11.196

Awawdeh, M. M., & Muhamad, A. (2021). Using E-Wallet for Business Process Development: Challenges and Prospects in Malaysia. Business Process Management Journal, 27(4), 1142–1162. https://doi.org/10.1108/BPMJ-11-2020-0528ï

Ayanwale, M. A., & Molefi, R. R. (2024). Exploring intention of undergraduate students to embrace chatbots: from the vantage point of Lesotho. International Journal of Educational Technology in Higher Education, 21(1). https://doi.org/10.1186/s41239-024-00451-8

Balakrishnan, V., & Shuib, N. L. M. (2021). Drivers and inhibitors for digital payment adoption using the Cashless Society Readiness-Adoption model in Malaysia. Technology in Society, 65, 101554. https://doi.org/10.1016/J.TECHSOC.2021.101554

Bavel, J. J. V., Baicker, K., Boggio, P. S., Capraro, V., Cichocka, A., Cikara, M., Crockett, M. J., Crum, A. J., Douglas, K. M., Druckman, J. N., Drury, J., Dube, O., Ellemers, N., Finkel, E. J., Fowler, J. H., Gelfand, M., Han, S., Haslam, S. A., Jetten, J., Willer, R. (2020). Using social and behavioural science to support COVID-19 pandemic response. In Nature Human Behaviour (Vol. 4, Issue 5, pp. 460–471). Nature Research. https://doi.org/10.1038/s41562-020-0884-z

Belanche, D., Flavián, M., & Pérez-Rueda, A. (2020). Mobile apps use and WOM in the food delivery sector: The role of planned behavior, perceived security and customer lifestyle compatibility. Sustainability (Switzerland), 12(10). https://doi.org/10.3390/su12104275

Beyari, H., & Abareshi, A. (2019). The Interaction of Trust and Social Influence Factors in the Social Commerce Environment (pp. 931–944). https://doi.org/10.1007/978-3-319-99007-1_86

Camilleri, S. J., & Agius, C. (2021). Choosing between Innovative and Traditional Payment Systems: An Empirical Analysis of European Trends. Journal of Innovation Management, 9(4), 29–57. https://doi.org/10.24840/2183-0606_009.004_0003

Chawla, D., & Joshi, H. (2019). Consumer attitude and intention to adopt mobile wallet in India – An empirical study. International Journal of Bank Marketing, 37(7), 1590–1618. https://doi.org/10.1108/IJBM-09-2018-0256

Che Nawi, N., Mamun, A. Al, Hayat, N., & Seduram, L. (2022). Promoting Sustainable Financial Services Through the Adoption of eWallet Among Malaysian Working Adults. SAGE Open, 12(1). https://doi.org/10.1177/21582440211071107

Constantiou, I. D., Damsgaard, J., & Knutsen, L. (2006). Exploring perceptions and use of mobile services: user differences in an advancing market. International Journal of Mobile Communications, 4(3), 231. https://doi.org/10.1504/IJMC.2006.008940

Cugno, M., Castagnoli, R., & Büchi, G. (2021). Openness to Industry 4.0 and performance: The impact of barriers and incentives. Technological Forecasting and Social Change, 168. https://doi.org/10.1016/j.techfore.2021.120756

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008

Ehrenhard, M., Wijnhoven, F., van den Broek, T., & Zinck Stagno, M. (2017). Unlocking how start-ups create business value with mobile applications: Development of an App-enabled Business Innovation Cycle. Technological Forecasting and Social Change, 115, 26–36. https://doi.org/10.1016/j.techfore.2016.09.011

Fishbein, M. , & A. I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Addison-Wesley.

George, A., & Sahadevan, J. (2024). What determines behavioural intention in health services? A four-stage loyalty model. Rajagiri Management Journal, 18(2), 180–197. https://doi.org/10.1108/ramj-10-2023-0291

Gupta, K., & Arora, N. (2020). Investigating consumer intention to accept mobile payment systems through unified theory of acceptance model: An Indian perspective. South Asian Journal of Business Studies, 9(1), 88–114. https://doi.org/10.1108/SAJBS-03-2019-0037

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis Eighth Edition. www.cengage.com/highered

Hair, J. F. ., Hult, G. T. M. ., Ringle, C. M. ., & Sarstedt, Marko. (2017). A primer on partial least squares structural equation modeling (PLS-SEM). Sage.

Hair, J. F. ., Hult, G. T. M. ., Ringle, C. M. ., & Sarsterdt, M. (2022). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) Third Edition.

Hariono, R., Assumpta, M., & Marlina, E. (2021). Sebagai variabel mediator pada star motor carwash. In performa: Jurnal Manajemen dan Start-Up Bisnis (Vol. 6, Issue 1).

Haryono, A., Susilowati, E., Afifah, N., Andriani Hapsari, A., Anis Bena Kinanti, L., Al-Muafa Sampang, T., & Koordinator Bidang Kemaritiman dan Investasi, K. (2023). SEIKO : Journal of Management & Business The Impact Of Satisfaction And Trust On Customer Loyalty: The Role Of Word Of Mouth Intervention At Bank Jatim. SEIKO : Journal of Management & Business, 6(2), 432–444.

Hasan, A., Sikarwar, P., Mishra, A., Raghuwanshi, S., Singhal, A., Joshi, A., Singh, P. R., & Dixit, A. (2024a). Determinants of Behavioral Intention to Use Digital Payment among Indian Youngsters. Journal of Risk and Financial Management, 17(2). https://doi.org/10.3390/jrfm17020087

Hong, Y. (2024). The Investigation on Satisfaction and Behavioral Intention to Use Graduation Management System: A Case of Chinese Art Students (Vol. 16, Issue 1). http://www.assumptionjournal.au.edu/index.php/Scholar

Hsiao, C.-H., Chang, J.-J., & Tang, K.-Y. (2016). Exploring the influential factors in continuance usage of mobile social Apps: Satisfaction, habit, and customer value perspectives. Telematics and Informatics, 33(2), 342–355. https://doi.org/10.1016/j.tele.2015.08.014

Iqbal M., Heriyadi, Barkah, Ramadania, & Juniwati. (2024). Role Customer Satisfaction in Mediating Influence Product Quality and Attractiveness of Alternatives on Customer Recommendations (Studi At Saba Indomedika, Pontianak). JIM: Jurnal Ilmiah Mahasiswa Pendidikan Sejarah. https://doi.org/10.31703/jimps.v9i3.31703

Kalinić, Z., Marinković, V., Djordjevic, A., & Liebana-Cabanillas, F. (2019). What drives customer satisfaction and word of mouth in mobile commerce services? A UTAUT2-based analytical approach. Journal of Enterprise Information Management, 33(1), 71–94. https://doi.org/10.1108/JEIM-05-2019-0136

Khan, S., Umer, R., Umer, S., & Naqvi, S. (2021). Antecedents of trust in using social media for E-government services: An empirical study in Pakistan. Technology in Society, 64, 101400. https://doi.org/10.1016/J.TECHSOC.2020.101400

Kumar, S., Talwar, S., Krishnan, S., Kaur, P., & Dhir, A. (2021). Purchasing natural personal care products in the era of fake news? The moderation effect of brand trust. Journal of Retailing and Consumer Services, 63, 102668. https://doi.org/10.1016/j.jretconser.2021.102668

Liébana-Cabanillas, F., Sánchez-Fernández, J., & Muñoz-Leiva, F. (2014). The moderating effect of experience in the adoption of mobile payment tools in Virtual Social Networks: The m-Payment Acceptance Model in Virtual Social Networks (MPAM-VSN). International Journal of Information Management, 34(2), 151–166. https://doi.org/10.1016/j.ijinfomgt.2013.12.006

Marinkovic, V., & Kalinic, Z. (2017). Antecedents of customer satisfaction in mobile commerce. Online Information Review, 41(2), 138–154. https://doi.org/10.1108/OIR-11-2015-0364

Yunior, M. C., & Sudibijo, Y.A. (2024). The Influence of Social Influence, Relative Advantage, User Satisfaction on Cloud-Based E-Learning with Behavioral Intention as a Mediating Variable. Technium Social Sciences Journal, 56, 36–50. https://doi.org/10.47577/tssj.v56i1.10742

Hutauruk, B. N. (2023). Enrichment: Journal of Management Application of the Technology Acceptance Model (TAM) in testing the acceptance model of application BORN (Business & Operational Risk Management Nindya Karya). Enrichment: Journal of Management, 13(3).

Nguyen, H. T., & Borazon, E. Q. (2023). Drivers of e-government use during the COVID-19 pandemic: the case of Vietnam. Online Information Review, 47(5), 838–861. https://doi.org/10.1108/OIR-08-2021-0440

Okazaki, S., & Mendez, F. (2013). Exploring convenience in mobile commerce: Moderating effects of gender. Computers in Human Behavior, 29(3), 1234–1242. https://doi.org/10.1016/j.chb.2012.10.019

Oliveira, T., Alhinho, M., Rita, P., & Dhillon, G. (2017). Modelling and testing consumer trust dimensions in e-commerce. Computers in Human Behavior, 71, 153–164. https://doi.org/10.1016/j.chb.2017.01.050

Oliver, R. L. (1980). A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions. Journal of Marketing Research, 17(4), 460–469. https://doi.org/10.1177/002224378001700405

Parady, G., Taniguchi, A., & Takami, K. (2020). Travel behavior changes during the COVID-19 pandemic in Japan: Analyzing the effects of risk perception and social influence on going-out self-restriction. Transportation Research Interdisciplinary Perspectives, 7, 100181. https://doi.org/10.1016/j.trip.2020.100181

Pramudita, E., Achmadi, H., & Nurhaida, H. (2023). Determinants of behavioral intention toward telemedicine services among Indonesian Gen-Z and Millenials: a PLS–SEM study on Alodokter application. Journal of Innovation and Entrepreneurship, 12(1). https://doi.org/10.1186/s13731-023-00336-6

Sankaran, R., & Chakraborty, S. (2023). Measuring consumer perception of overall brand equity drivers for m-payments. International Journal of Bank Marketing, 41(1), 130–157. https://doi.org/10.1108/IJBM-03-2022-0113

Sarstedt, M., Ringle, C. M., & Hair, J. F. (2021). Partial Least Squares Structural Equation Modeling. In Handbook of Market Research (pp. 1–47). Springer International Publishing. https://doi.org/10.1007/978-3-319-05542-8_15-2

Schmidthuber, L., Maresch, D., & Ginner, M. (2020). Disruptive technologies and abundance in the service sector - toward a refined technology acceptance model. Technological Forecasting and Social Change, 155, 119328. https://doi.org/10.1016/j.techfore.2018.06.017

Tandon, U., Kiran, R., & Sah, A. N. (2018). The influence of website functionality, drivers and perceived risk on customer satisfaction in online shopping: an emerging economy case. Information Systems and E-Business Management, 16(1), 57–91. https://doi.org/10.1007/s10257-017-0341-3

Tan, G. W.-H., Ooi, K.-B., Leong, L.-Y., & Lin, B. (2014). Predicting the drivers of behavioral intention to use mobile learning: A hybrid SEM-Neural Networks approach. Computers in Human Behavior, 36, 198–213. https://doi.org/10.1016/j.chb.2014.03.052

Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540

Viswanathan, P., Singh, A. B., & Gupta, G. (2020). The role of social influence and e-service quality in impacting loyalty for online life insurance: a SEM-based study. International Journal of Business Excellence, 20(3), 322. https://doi.org/10.1504/IJBEX.2020.106370

Williams, M. D. (2021). Social commerce and the mobile platform: Payment and security perceptions of potential users. Computers in Human Behavior, 115, 105557. https://doi.org/10.1016/J.CHB.2018.06.005

Wu, L. W., & Tang, Y. C. (2022). Mobile payment in omnichannel retailing: dynamics between trust and loyalty transfer processes. Internet Research, 32(6), 1783–1805. https://doi.org/10.1108/INTR-06-2021-0402

Zeithaml, V. A., Berry, L. L., & Parasuraman, A. (1996). The Behavioral Consequences of Service Quality. Journal of Marketing, 60(2), 31. https://doi.org/10.2307/1251929

Downloads

Published

2025-01-30

How to Cite

Fahri, F., Afifah, N., Juniwati, J., Purmono, B. B., & Ahmadi, A. (2025). Comparative study of the factors that influence Behavioral Intentions in DANA and OVO users. Journal of Management and Digital Business, 5(1), 105–121. https://doi.org/10.53088/jmdb.v5i1.1332