Melatonin’s Role in Female Fertility: Molecular Insights and Therapeutic Implications
DOI:
https://doi.org/10.53088/griyawidya.v5i1.1886Keywords:
Melatonin, Antioxidant, Female, Fertility, Reproductive HealthAbstract
Background: This narrative review examines how melatonin enhances reproductive health functions. Melatonin has established itself as a multifaceted neurohormone with pivotal roles in female reproductive health. Through its potent antioxidant properties, melatonin protects oocytes and orchestrates hormonal regulation and ovarian function, with melatonin receptors strategically located in key reproductive tissues, including ovarian granulosa and luteal cells.
Method: This narrative review examines how melatonin preserves and enhances female fertility by analyzing clinical outcomes and molecular pathways. It compiles research on the effects of melatonin on ovarian function, oocyte quality, hormone regulation, and assisted reproductive technologies from major databases published between 2015 and 2025. The study consistently shows how melatonin works and its potential benefits, offering broad insights without strict limits.
Result: Melatonin operates through multiple receptor-mediated pathways to regulate reproductive functions. Clinical evidence shows melatonin supplementation improves assisted reproductive technology (ART)’s success rates by enhancing oocyte maturation and embryo quality, restoring menstrual regularity in PCOS patients, and protecting reproductive tissues from oxidative stress-induced damage.
Implication: These findings support melatonin's therapeutic potential in assisted reproductive technologies and treating reproductive disorders. Healthcare providers should consider melatonin supplementation as an adjuvant therapy for women undergoing fertility treatments or experiencing reproductive dysfunction while establishing standardized protocols for optimal dosing and timing.
Novelty: This comprehensive review reveals melatonin's multifaceted role as a fertility regulator, providing molecular insights into its therapeutic mechanisms and clinical applications in women's reproductive health across the reproductive lifespan
References
Amaral, F. G. do, & Cipolla-Neto, J. (2018). A brief review about melatonin, a pineal hormone. Archives of Endocrinology and Metabolism, 62(4), 472–479. https://doi.org/10.20945/2359-3997000000066
Arendt, J., & Aulinas, A. (2022). Physiology of the pineal gland and melatonin. In L. J. De Groot, G. Chrousos, K. Dungan, et al. (Eds.), Endotext. MDText.com. https://www.ncbi.nlm.nih.gov/sites/books/NBK550972/
Arjoune, A., & Sirard, M.-A. (2022). Melatonin signaling pathways implicated in metabolic processes in human granulosa cells (KGN). International Journal of Molecular Sciences, 23(6), 2988. https://doi.org/10.3390/ijms23062988
Bao, Z., Li, G., Wang, R., Xue, S., Zeng, Y., & Deng, S. (2022). Melatonin improves quality of repeated-poor and frozen-thawed embryos in human, a prospective clinical trial. Frontiers in Endocrinology, 13, 853999. https://doi.org/10.3389/fendo.2022.853999
Bezerra Espinola, M. S., Bilotta, G., & Aragona, C. (2021). Positive effect of a new supplementation of vitamin D3 with myo-inositol, folic acid and melatonin on IVF outcomes: A prospective randomized and controlled pilot study. Gynecological Endocrinology, 37(3), 251–254. https://doi.org/10.1080/09513590.2020.1760820
Chan, A. S. L., Lai, F. P. L., Lo, R. K. H., Voyno-Yasenetskaya, T. A., Stanbridge, E. J., & Wong, Y. H. (2002). Melatonin MT1 and MT2 receptors stimulate c-Jun N-terminal kinase via pertussis toxin-sensitive and -insensitive G proteins. Cellular Signalling, 14(3), 249–257. https://doi.org/10.1016/S0898-6568(01)00240-6
Cheng, J. C., Fang, L., Li, Y., Wang, S., Li, Y., Yan, Y., Jia, Q., Wu, Z., Wang, Z., Han, X., & Sun, Y. P. (2020). Melatonin stimulates aromatase expression and estradiol production in human granulosa-lutein cells: Relevance for high serum estradiol levels in patients with ovarian hyperstimulation syndrome. Experimental & Molecular Medicine, 52(8), 1341–1350. https://doi.org/10.1038/s12276-020-00491-w
Espino, J., Macedo, M., Lozano, G., Ortiz, Á., Rodríguez, C., Rodríguez, A. B., & Bejarano, I. (2019). Impact of melatonin supplementation in women with unexplained infertility undergoing fertility treatment. Antioxidants, 8(9), 338. https://doi.org/10.3390/antiox8090338
Fang, L., Li, Y., Wang, S., Yu, Y., Li, Y., Guo, Y., Yan, Y., & Sun, Y. P. (2019). Melatonin induces progesterone production in human granulosa-lutein cells through upregulation of StAR expression. Aging, 11(20), 9013–9024. https://doi.org/10.18632/aging.102367
Fernando, S., Osianlis, T., Vollenhoven, B., Wallace, E., & Rombauts, L. (2014). A pilot double-blind randomised placebo-controlled dose-response trial assessing the effects of melatonin on infertility treatment (MIART): Study protocol. BMJ Open, 4(8), e005986. https://doi.org/10.1136/bmjopen-2014-005986
Fernando, S., Wallace, E. M., Rombauts, L., White, N., Hong, J., Vollenhoven, B., Lolatgis, N., Hope, N., Wong, M., Lawrence, M., Lawrence, A., Russell, C., Leong, K., Thomas, P., & da Silva Costa, F. (2020). The effect of melatonin on ultrasound markers of follicular development: A double-blind placebo-controlled randomised trial. Australian and New Zealand Journal of Obstetrics and Gynaecology, 60(1), 141–148. https://doi.org/10.1111/ajo.13074
Gelen, V., Şengül, E., & Kükürt, A. (2022). An overview of effects on reproductive physiology of melatonin. In Melatonin - Recent Updates. IntechOpen. https://doi.org/10.5772/intechopen.108101
González, A., González-González, A., Alonso-González, C., Menéndez-Menéndez, J., Martínez-Campa, C., & Cos, S. (2018). Complementary actions of melatonin on angiogenic factors, the angiopoietin/Tie2 axis and VEGF, in co-cultures of human endothelial and breast cancer cells. Oncology Reports, 39(1), 433–441. https://doi.org/10.3892/or.2017.6070
Guo, Y. M., Sun, T. C., Wang, H. P., & Chen, X. (2021). Research progress of melatonin (MT) in improving ovarian function: A review of the current status. Aging, 13(13), 17930–17944. https://doi.org/10.18632/aging.203231
Hu, K. L., Ye, X., Wang, S., & Zhang, D. (2020). Melatonin application in assisted reproductive technology: A systematic review and meta-analysis of randomized trials. Frontiers in Endocrinology, 11, 160. https://doi.org/10.3389/fendo.2020.00160
Jiang, Y., Shi, H., Liu, Y., Zhao, S., & Zhao, H. (2021). Applications of melatonin in female reproduction in the context of oxidative stress. Oxidative Medicine and Cellular Longevity, 2021, 6668365. https://doi.org/10.1155/2021/6668365
Jing, T., Shile, S., Sun, Y., Li, H., Li, W. P., Cong, Z., & Chen, Z. J. (2017). Melatonin levels in follicular fluid as markers for IVF outcomes and predicting ovarian reserve. Reproduction, 153(4), 443–451. https://doi.org/10.1530/rep-16-0641
Koonrungsesomboon, N., Khatsri, R., Wongchompoo, P., & Teekachunhatean, S. (2018). The impact of genetic polymorphisms on CYP1A2 activity in humans: A systematic review and meta-analysis. Pharmacogenomics Journal, 18(6), 760–768. https://doi.org/10.1038/s41397-017-0011-3
Li, Q., Zheng, T., Chen, J., Li, B., Zhang, Q., Yang, S., Shao, J., Guan, W., & Zhang, S. (2024). Exploring melatonin’s multifaceted role in female reproductive health: From follicular development to lactation and its therapeutic potential in obstetric syndromes. Journal of Advanced Research, 70, 223–242. https://doi.org/10.1016/j.jare.2024.04.025
Li, Y., Hung, S. W., Zhang, R., Man, G. C. W., Zhang, T., Chung, J. P. W., Fang, L., & Wang, C. C. (2022). Melatonin in endometriosis: Mechanistic understanding and clinical insight. Nutrients, 14(19), 4087. https://doi.org/10.3390/nu14194087
Liu, J., Clough, S. J., Hutchinson, A. J., Adamah-Biassi, E. B., Popovska-Gorevski, M., & Dubocovich, M. L. (2016). MT1 and MT2 melatonin receptors: A therapeutic perspective. Annual Review of Pharmacology and Toxicology, 56, 361–383. https://doi.org/10.1146/annurev-pharmtox-010814-124742
Ma, M. A., & Morrison, E. H. (2023). Neuroanatomy, nucleus suprachiasmatic. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK546664/
Marco, M., Plazzi, P. V., Spadoni, G., & Tarzia, G. (1999). Melatonin. Current Medicinal Chemistry, 6(6), 501–518. https://doi.org/10.2174/0929867306666220330190146
Nikolov, G., Konakchieva, R., Nikolaev, G., & Marinova, E. (2022). Molecular mechanisms of melatonin action in human reproductive system – Implications for assisted reproduction. Human Reproduction, 37(Suppl. 1). https://doi.org/10.1093/humrep/deac107.200
Nishihara, T., Hashimoto, S., Ito, K., Nakaoka, Y., Matsumoto, K., Hosoi, Y., & Morimoto, Y. (2014). Oral melatonin supplementation improves oocyte and embryo quality in women undergoing in vitro fertilization-embryo transfer. Gynecological Endocrinology, 30(5), 359–362. https://doi.org/10.3109/09513590.2013.879856
Olcese, J. M. (2020). Melatonin and female reproduction: An expanding universe. Frontiers in Endocrinology, 11, 85. https://doi.org/10.3389/fendo.2020.00085
Parua, S., Roy Choudhury, G., Bhattacharya, S., Hazra, A., Dutta, S., Sengupta, P., & Bhattacharya, K. (2024). Melatonin in female fertility: Multifaceted role from reproductive physiology to therapeutic potential in polycystic ovary syndrome, endometriosis, and ovarian failure. Chronobiology in Medicine, 6(4), 145–162. https://doi.org/10.33069/cim.2024.0022
Patel, A., Dewani, D., Jaiswal, A., Yadav, P., & Reddy, L. S. (2023). Exploring melatonin’s multifaceted role in polycystic ovary syndrome management: A comprehensive review. Cureus, 15(6), e48929. https://doi.org/10.7759/cureus.48929
Pervez, A. (2023). Addressing female reproductive disorders: The potential role of melatonin. Student’s Journal of Health Research Africa, 4(12), 5. https://doi.org/10.51168/sjhrafrica.v4i12.897
Rai, S., & Gosh, H. (2021). Modulation of human ovarian function by melatonin. Frontiers in Bioscience - Elite, 26(1), 140–157. https://doi.org/10.2741/875
Reiter, R. J., Rosales-Corral, S. A., Tan, D.-X., Acuña-Castroviejo, D., Qin, L., Yang, S.-F., & Xu, K. (2017). Melatonin, a full service anti-cancer agent: Inhibition of initiation, progression and metastasis. International Journal of Molecular Sciences, 18(4), 843. https://doi.org/10.3390/ijms18040843
Scarinci, E., Tropea, A., Notaristefano, G., Arena, V., Alesiani, O., Fabozzi, S. M., Lanzone, A., & Apa, R. (2019). “Hormone of darkness” and human reproductive process: Direct regulatory role of melatonin in human corpus luteum. Journal of Endocrinological Investigation, 42(10), 1191–1197. https://doi.org/10.1007/s40618-019-01036-3
Song, X., Sun, X., Ma, G., Sun, Y., Shi, Y., Du, Y., & Chen, Z. J. (2015). Family association study between melatonin receptor gene polymorphisms and polycystic ovary syndrome in Han Chinese. European Journal of Obstetrics & Gynecology and Reproductive Biology, 195, 108–112. https://doi.org/10.1016/j.ejogrb.2015.09.043
Tamura, H., Jozaki, M., Tanabe, M., Shirafuta, Y., Mihara, Y., Shinagawa, M., Tamura, I., Maekawa, R., Sato, S., Taketani, T., Takasaki, A., Reiter, R. J., & Sugino, N. (2020). Importance of melatonin in assisted reproductive technology and ovarian aging. International Journal of Molecular Sciences, 21(3), 1135. https://doi.org/10.3390/ijms21031135
Tamura, H., Kawamoto, M., Sato, S., Tamura, I., Maekawa, R., Taketani, T., Asada, H., Takaki, E., Nakai, A., Reiter, R. J., & Sugino, N. (2017). Long-term melatonin treatment delays ovarian aging. Journal of Pineal Research, 62(2), e12381. https://doi.org/10.1111/jpi.12381
Tsui, K. H., Li, C. J., & Lin, L. T. (2024). Melatonin supplementation attenuates cuproptosis and ferroptosis in aging cumulus and granulosa cells: Potential for improving IVF outcomes in advanced maternal age. Reproductive Biology and Endocrinology, 22(1), 30. https://doi.org/10.1186/s12958-024-01311-w
Unfer, V., Raffone, E., Rizzo, P., & Buffo, S. (2011). Effect of a supplementation with myo-inositol plus melatonin on oocyte quality in women who failed to conceive in previous in vitro fertilization cycles for poor oocyte quality: A prospective, longitudinal, cohort study. Gynecological Endocrinology, 27(11), 857–861. https://doi.org/10.3109/09513590.2011.564687
Yang, Z., Du, X., Wang, A., Zhao, Y., Xia, Y., Shi, L., Ding, S., Yue, X., Xing, F., Ji, D., Liang, D., Zha, Z., Liang, C., Cao, Y., & Liu, Y. (2025). Melatonin ameliorates Pb-induced mitochondrial homeostasis and ovarian damage through regulating the p38 signaling pathway. Ecotoxicology and Environmental Safety, 292, 117937. https://doi.org/10.1016/j.ecoenv.2025.117937
Yi, S., Xu, J., Shi, H., Li, W., Li, Q., & Sun, Y. P. (2020). Association between melatonin receptor gene polymorphisms and polycystic ovarian syndrome: A systematic review and meta-analysis. Bioscience Reports, 40(6), BSR20200824. https://doi.org/10.1042/bsr20200824
Zare, H., Shafabakhsh, R., Reiter, R. J., & Asemi, Z. (2019). Melatonin is a potential inhibitor of ovarian cancer: Molecular aspects. Journal of Ovarian Research, 12(1), 65. https://doi.org/10.1186/s13048-019-0502-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Benedikta Diah Saraswati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
The author(s) retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a CC BY-SA 4.0 license that allows others to remix, adapt, and build upon the work even for commercial purposes, as long as they credit the author(s) and license their new creations under the identical terms.
License details: https://creativecommons.org/licenses/by-sa/4.0/