Melatonin’s Role in Female Fertility: Molecular Insights and Therapeutic Implications

Authors

  • Benedikta Diah Saraswati Faculty of Medicine, IPB University, Bogor

DOI:

https://doi.org/10.53088/griyawidya.v5i1.1886

Keywords:

Melatonin, Antioxidant, Female, Fertility, Reproductive Health

Abstract

Background: This narrative review examines how melatonin enhances reproductive health functions. Melatonin has established itself as a multifaceted neurohormone with pivotal roles in female reproductive health. Through its potent antioxidant properties, melatonin protects oocytes and orchestrates hormonal regulation and ovarian function, with melatonin receptors strategically located in key reproductive tissues, including ovarian granulosa and luteal cells.

Method: This narrative review examines how melatonin preserves and enhances female fertility by analyzing clinical outcomes and molecular pathways. It compiles research on the effects of melatonin on ovarian function, oocyte quality, hormone regulation, and assisted reproductive technologies from major databases published between 2015 and 2025. The study consistently shows how melatonin works and its potential benefits, offering broad insights without strict limits.

Result: Melatonin operates through multiple receptor-mediated pathways to regulate reproductive functions. Clinical evidence shows melatonin supplementation improves assisted reproductive technology (ART)’s success rates by enhancing oocyte maturation and embryo quality, restoring menstrual regularity in PCOS patients, and protecting reproductive tissues from oxidative stress-induced damage.

Implication: These findings support melatonin's therapeutic potential in assisted reproductive technologies and treating reproductive disorders. Healthcare providers should consider melatonin supplementation as an adjuvant therapy for women undergoing fertility treatments or experiencing reproductive dysfunction while establishing standardized protocols for optimal dosing and timing.

Novelty: This comprehensive review reveals melatonin's multifaceted role as a fertility regulator, providing molecular insights into its therapeutic mechanisms and clinical applications in women's reproductive health across the reproductive lifespan

References

Amaral, F. G. do, & Cipolla-Neto, J. (2018). A brief review about melatonin, a pineal hormone. Archives of Endocrinology and Metabolism, 62(4), 472–479. https://doi.org/10.20945/2359-3997000000066

Arendt, J., & Aulinas, A. (2022). Physiology of the pineal gland and melatonin. In L. J. De Groot, G. Chrousos, K. Dungan, et al. (Eds.), Endotext. MDText.com. https://www.ncbi.nlm.nih.gov/sites/books/NBK550972/

Arjoune, A., & Sirard, M.-A. (2022). Melatonin signaling pathways implicated in metabolic processes in human granulosa cells (KGN). International Journal of Molecular Sciences, 23(6), 2988. https://doi.org/10.3390/ijms23062988

Bao, Z., Li, G., Wang, R., Xue, S., Zeng, Y., & Deng, S. (2022). Melatonin improves quality of repeated-poor and frozen-thawed embryos in human, a prospective clinical trial. Frontiers in Endocrinology, 13, 853999. https://doi.org/10.3389/fendo.2022.853999

Bezerra Espinola, M. S., Bilotta, G., & Aragona, C. (2021). Positive effect of a new supplementation of vitamin D3 with myo-inositol, folic acid and melatonin on IVF outcomes: A prospective randomized and controlled pilot study. Gynecological Endocrinology, 37(3), 251–254. https://doi.org/10.1080/09513590.2020.1760820

Chan, A. S. L., Lai, F. P. L., Lo, R. K. H., Voyno-Yasenetskaya, T. A., Stanbridge, E. J., & Wong, Y. H. (2002). Melatonin MT1 and MT2 receptors stimulate c-Jun N-terminal kinase via pertussis toxin-sensitive and -insensitive G proteins. Cellular Signalling, 14(3), 249–257. https://doi.org/10.1016/S0898-6568(01)00240-6

Cheng, J. C., Fang, L., Li, Y., Wang, S., Li, Y., Yan, Y., Jia, Q., Wu, Z., Wang, Z., Han, X., & Sun, Y. P. (2020). Melatonin stimulates aromatase expression and estradiol production in human granulosa-lutein cells: Relevance for high serum estradiol levels in patients with ovarian hyperstimulation syndrome. Experimental & Molecular Medicine, 52(8), 1341–1350. https://doi.org/10.1038/s12276-020-00491-w

Espino, J., Macedo, M., Lozano, G., Ortiz, Á., Rodríguez, C., Rodríguez, A. B., & Bejarano, I. (2019). Impact of melatonin supplementation in women with unexplained infertility undergoing fertility treatment. Antioxidants, 8(9), 338. https://doi.org/10.3390/antiox8090338

Fang, L., Li, Y., Wang, S., Yu, Y., Li, Y., Guo, Y., Yan, Y., & Sun, Y. P. (2019). Melatonin induces progesterone production in human granulosa-lutein cells through upregulation of StAR expression. Aging, 11(20), 9013–9024. https://doi.org/10.18632/aging.102367

Fernando, S., Osianlis, T., Vollenhoven, B., Wallace, E., & Rombauts, L. (2014). A pilot double-blind randomised placebo-controlled dose-response trial assessing the effects of melatonin on infertility treatment (MIART): Study protocol. BMJ Open, 4(8), e005986. https://doi.org/10.1136/bmjopen-2014-005986

Fernando, S., Wallace, E. M., Rombauts, L., White, N., Hong, J., Vollenhoven, B., Lolatgis, N., Hope, N., Wong, M., Lawrence, M., Lawrence, A., Russell, C., Leong, K., Thomas, P., & da Silva Costa, F. (2020). The effect of melatonin on ultrasound markers of follicular development: A double-blind placebo-controlled randomised trial. Australian and New Zealand Journal of Obstetrics and Gynaecology, 60(1), 141–148. https://doi.org/10.1111/ajo.13074

Gelen, V., Şengül, E., & Kükürt, A. (2022). An overview of effects on reproductive physiology of melatonin. In Melatonin - Recent Updates. IntechOpen. https://doi.org/10.5772/intechopen.108101

González, A., González-González, A., Alonso-González, C., Menéndez-Menéndez, J., Martínez-Campa, C., & Cos, S. (2018). Complementary actions of melatonin on angiogenic factors, the angiopoietin/Tie2 axis and VEGF, in co-cultures of human endothelial and breast cancer cells. Oncology Reports, 39(1), 433–441. https://doi.org/10.3892/or.2017.6070

Guo, Y. M., Sun, T. C., Wang, H. P., & Chen, X. (2021). Research progress of melatonin (MT) in improving ovarian function: A review of the current status. Aging, 13(13), 17930–17944. https://doi.org/10.18632/aging.203231

Hu, K. L., Ye, X., Wang, S., & Zhang, D. (2020). Melatonin application in assisted reproductive technology: A systematic review and meta-analysis of randomized trials. Frontiers in Endocrinology, 11, 160. https://doi.org/10.3389/fendo.2020.00160

Jiang, Y., Shi, H., Liu, Y., Zhao, S., & Zhao, H. (2021). Applications of melatonin in female reproduction in the context of oxidative stress. Oxidative Medicine and Cellular Longevity, 2021, 6668365. https://doi.org/10.1155/2021/6668365

Jing, T., Shile, S., Sun, Y., Li, H., Li, W. P., Cong, Z., & Chen, Z. J. (2017). Melatonin levels in follicular fluid as markers for IVF outcomes and predicting ovarian reserve. Reproduction, 153(4), 443–451. https://doi.org/10.1530/rep-16-0641

Koonrungsesomboon, N., Khatsri, R., Wongchompoo, P., & Teekachunhatean, S. (2018). The impact of genetic polymorphisms on CYP1A2 activity in humans: A systematic review and meta-analysis. Pharmacogenomics Journal, 18(6), 760–768. https://doi.org/10.1038/s41397-017-0011-3

Li, Q., Zheng, T., Chen, J., Li, B., Zhang, Q., Yang, S., Shao, J., Guan, W., & Zhang, S. (2024). Exploring melatonin’s multifaceted role in female reproductive health: From follicular development to lactation and its therapeutic potential in obstetric syndromes. Journal of Advanced Research, 70, 223–242. https://doi.org/10.1016/j.jare.2024.04.025

Li, Y., Hung, S. W., Zhang, R., Man, G. C. W., Zhang, T., Chung, J. P. W., Fang, L., & Wang, C. C. (2022). Melatonin in endometriosis: Mechanistic understanding and clinical insight. Nutrients, 14(19), 4087. https://doi.org/10.3390/nu14194087

Liu, J., Clough, S. J., Hutchinson, A. J., Adamah-Biassi, E. B., Popovska-Gorevski, M., & Dubocovich, M. L. (2016). MT1 and MT2 melatonin receptors: A therapeutic perspective. Annual Review of Pharmacology and Toxicology, 56, 361–383. https://doi.org/10.1146/annurev-pharmtox-010814-124742

Ma, M. A., & Morrison, E. H. (2023). Neuroanatomy, nucleus suprachiasmatic. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK546664/

Marco, M., Plazzi, P. V., Spadoni, G., & Tarzia, G. (1999). Melatonin. Current Medicinal Chemistry, 6(6), 501–518. https://doi.org/10.2174/0929867306666220330190146

Nikolov, G., Konakchieva, R., Nikolaev, G., & Marinova, E. (2022). Molecular mechanisms of melatonin action in human reproductive system – Implications for assisted reproduction. Human Reproduction, 37(Suppl. 1). https://doi.org/10.1093/humrep/deac107.200

Nishihara, T., Hashimoto, S., Ito, K., Nakaoka, Y., Matsumoto, K., Hosoi, Y., & Morimoto, Y. (2014). Oral melatonin supplementation improves oocyte and embryo quality in women undergoing in vitro fertilization-embryo transfer. Gynecological Endocrinology, 30(5), 359–362. https://doi.org/10.3109/09513590.2013.879856

Olcese, J. M. (2020). Melatonin and female reproduction: An expanding universe. Frontiers in Endocrinology, 11, 85. https://doi.org/10.3389/fendo.2020.00085

Parua, S., Roy Choudhury, G., Bhattacharya, S., Hazra, A., Dutta, S., Sengupta, P., & Bhattacharya, K. (2024). Melatonin in female fertility: Multifaceted role from reproductive physiology to therapeutic potential in polycystic ovary syndrome, endometriosis, and ovarian failure. Chronobiology in Medicine, 6(4), 145–162. https://doi.org/10.33069/cim.2024.0022

Patel, A., Dewani, D., Jaiswal, A., Yadav, P., & Reddy, L. S. (2023). Exploring melatonin’s multifaceted role in polycystic ovary syndrome management: A comprehensive review. Cureus, 15(6), e48929. https://doi.org/10.7759/cureus.48929

Pervez, A. (2023). Addressing female reproductive disorders: The potential role of melatonin. Student’s Journal of Health Research Africa, 4(12), 5. https://doi.org/10.51168/sjhrafrica.v4i12.897

Rai, S., & Gosh, H. (2021). Modulation of human ovarian function by melatonin. Frontiers in Bioscience - Elite, 26(1), 140–157. https://doi.org/10.2741/875

Reiter, R. J., Rosales-Corral, S. A., Tan, D.-X., Acuña-Castroviejo, D., Qin, L., Yang, S.-F., & Xu, K. (2017). Melatonin, a full service anti-cancer agent: Inhibition of initiation, progression and metastasis. International Journal of Molecular Sciences, 18(4), 843. https://doi.org/10.3390/ijms18040843

Scarinci, E., Tropea, A., Notaristefano, G., Arena, V., Alesiani, O., Fabozzi, S. M., Lanzone, A., & Apa, R. (2019). “Hormone of darkness” and human reproductive process: Direct regulatory role of melatonin in human corpus luteum. Journal of Endocrinological Investigation, 42(10), 1191–1197. https://doi.org/10.1007/s40618-019-01036-3

Song, X., Sun, X., Ma, G., Sun, Y., Shi, Y., Du, Y., & Chen, Z. J. (2015). Family association study between melatonin receptor gene polymorphisms and polycystic ovary syndrome in Han Chinese. European Journal of Obstetrics & Gynecology and Reproductive Biology, 195, 108–112. https://doi.org/10.1016/j.ejogrb.2015.09.043

Tamura, H., Jozaki, M., Tanabe, M., Shirafuta, Y., Mihara, Y., Shinagawa, M., Tamura, I., Maekawa, R., Sato, S., Taketani, T., Takasaki, A., Reiter, R. J., & Sugino, N. (2020). Importance of melatonin in assisted reproductive technology and ovarian aging. International Journal of Molecular Sciences, 21(3), 1135. https://doi.org/10.3390/ijms21031135

Tamura, H., Kawamoto, M., Sato, S., Tamura, I., Maekawa, R., Taketani, T., Asada, H., Takaki, E., Nakai, A., Reiter, R. J., & Sugino, N. (2017). Long-term melatonin treatment delays ovarian aging. Journal of Pineal Research, 62(2), e12381. https://doi.org/10.1111/jpi.12381

Tsui, K. H., Li, C. J., & Lin, L. T. (2024). Melatonin supplementation attenuates cuproptosis and ferroptosis in aging cumulus and granulosa cells: Potential for improving IVF outcomes in advanced maternal age. Reproductive Biology and Endocrinology, 22(1), 30. https://doi.org/10.1186/s12958-024-01311-w

Unfer, V., Raffone, E., Rizzo, P., & Buffo, S. (2011). Effect of a supplementation with myo-inositol plus melatonin on oocyte quality in women who failed to conceive in previous in vitro fertilization cycles for poor oocyte quality: A prospective, longitudinal, cohort study. Gynecological Endocrinology, 27(11), 857–861. https://doi.org/10.3109/09513590.2011.564687

Yang, Z., Du, X., Wang, A., Zhao, Y., Xia, Y., Shi, L., Ding, S., Yue, X., Xing, F., Ji, D., Liang, D., Zha, Z., Liang, C., Cao, Y., & Liu, Y. (2025). Melatonin ameliorates Pb-induced mitochondrial homeostasis and ovarian damage through regulating the p38 signaling pathway. Ecotoxicology and Environmental Safety, 292, 117937. https://doi.org/10.1016/j.ecoenv.2025.117937

Yi, S., Xu, J., Shi, H., Li, W., Li, Q., & Sun, Y. P. (2020). Association between melatonin receptor gene polymorphisms and polycystic ovarian syndrome: A systematic review and meta-analysis. Bioscience Reports, 40(6), BSR20200824. https://doi.org/10.1042/bsr20200824

Zare, H., Shafabakhsh, R., Reiter, R. J., & Asemi, Z. (2019). Melatonin is a potential inhibitor of ovarian cancer: Molecular aspects. Journal of Ovarian Research, 12(1), 65. https://doi.org/10.1186/s13048-019-0502-8

Downloads

Published

2025-08-28

How to Cite

Saraswati, B. D. (2025). Melatonin’s Role in Female Fertility: Molecular Insights and Therapeutic Implications. Griya Widya: Journal of Sexual and Reproductive Health, 5(1), 1–14. https://doi.org/10.53088/griyawidya.v5i1.1886