Prediksi harga minyak mentah WTI dengan menggunakan metode Garch dalam ancaman perang dunia III
DOI:
https://doi.org/10.53088/jerps.v5i1.1778Keywords:
WTI Crude Oil, ARIMA-GARCH, Forecasting, Geopolitical ConflictsAbstract
This research aims to forecast fluctuations in the price of West Texas Intermediate (WTI) crude oil within the potential threat of World War III by utilizing the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) method. Using daily closing price data of WTI crude oil from January 2022 to March 2025, consisting of 850 observations, this study employs the ARIMA-GARCH model to capture the patterns and volatility of the time series data. Based on the conducted analysis, it is concluded that the ARIMA (2,1,2) and GARCH (1,1) models demonstrate optimal performance, with a MAPE value of 13.71%, indicating a good prediction accuracy level. The forecast for the next two years shows a trend of price increases starting from Q2 2025 through Q4 2027. This research demonstrates how geopolitical tensions, particularly the Russia-Ukraine war and Middle Eastern Conflicts, can affect global oil price volatility while highlighting the GARCH model’s effectiveness in capturing heteroskedasticity in highly fluctuating financial data.
References
Abay, K. A., Breisinger, C., Glauber, J., Kurdi, S., Laborde, D., & Siddig, K. (2023). The Russia-Ukraine war: Implications for global and regional food security and potential policy responses. Global Food Security, 36(February), 100675. https://doi.org/10.1016/j.gfs.2023.100675 DOI: https://doi.org/10.1016/j.gfs.2023.100675
Abys, C., Skakun, S., & Becker-Reshef, I. (2024). Two decades of winter wheat expansion and intensification in Russia. Remote Sensing Applications: Society and Environment, 33(November 2023), 101097. https://doi.org/10.1016/j.rsase.2023.101097 DOI: https://doi.org/10.1016/j.rsase.2023.101097
AL-Rousan, N., AL-Najjar, H., & AL-Najjar, D. (2024). The impact of Russo-Ukrainian war, COVID-19, and oil prices on global food security. Heliyon, 10(8), e29279. https://doi.org/10.1016/j.heliyon.2024.e29279 DOI: https://doi.org/10.1016/j.heliyon.2024.e29279
Amri, I. F., Sari, W., Widyasari, V. A., Nurohmah, N., & Haris, M. Al. (2024). The ARIMA-GARCH Method in Case Study Forecasting the Daily Stock Price Index of PT. Jasa Marga (Persero). Eigen Mathematics Journal, 7(1), 25–33. https://doi.org/10.29303/emj.v7i1.174 DOI: https://doi.org/10.29303/emj.v7i1.174
Beeg, F. A., Paendong, M. S., Mananohas, M. L., & Price, G. (2023). Penerapan Model Arima – Garch Untuk Peramalan Harga Emas Dunia. D’Cartesian: Jurnal Matematika Dan Aplikasi, 13(2), 73–79. https://doi.org/10.35799/dc.13.2.2024.55551 DOI: https://doi.org/10.35799/dc.13.2.2024.55551
Bilal, M., Aamir, M., Abdullah, S., & Khan, F. (2024). Impacts of crude oil market on global economy: Evidence from the Ukraine-Russia conflict via fuzzy models. Heliyon, 10(1), e23874. https://doi.org/10.1016/j.heliyon.2023.e23874 DOI: https://doi.org/10.1016/j.heliyon.2023.e23874
Dano, D. (2022). Analisis Dampak Konflik Rusia–Ukraina Terhadap Harga Bahan Bakar Minyak Indonesia. CENDEKIA: Jurnal Ilmu Pengetahuan, 2(3), 261–269. https://doi.org/10.51878/cendekia.v2i3.1494 DOI: https://doi.org/10.51878/cendekia.v2i3.1494
Famuji, A., Sriliana, I., & Agwil, W. (2024). Penerapan model asymmetric power autoregressive conditional heteroscedasticity (aparch) terhadap harga minyak mentah dunia. Jurnal Gaussian, 13(1), 99–109. https://doi.org/10.14710/j.gauss.13.1.99-109 DOI: https://doi.org/10.14710/j.gauss.13.1.99-109
Gunawan, D., & Darwin. (2023). Peramalan Harga Saham Syariah PT. Unilever Indonesia Tbk menggunakan Garch. Krigan: Journal of Management and Sharia Business, 1(2), 88–101. https://doi.org/10.30983/krigan.v1i2.7976
Gunawan, D., & Febrianti, I. (2023). Ethereum Value Forecasting Model using Autoregressive Integrated Moving Average (ARIMA). International Journal of Advances in Social Sciences and Humanities, 2(1), 29–35. https://doi.org/10.56225/ijassh.v2i1.151 DOI: https://doi.org/10.56225/ijassh.v2i1.151
Haque, M. I., & Shaik, A. R. S. (2021). Predicting crude oil prices during a pandemic: A comparison of arima and garch models. Montenegrin Journal of Economics, 17(1), 197–207. https://doi.org/10.14254/1800-5845/2021.17-1.15 DOI: https://doi.org/10.14254/1800-5845/2021.17-1.15
Iqbal, M., & Ningsih, N. W. (2021). Prediksi Harga Saham Harian PT BTPN Syariah Tbk Menggunakan Model Arima dan Model Garch. Jurnal Ilmiah Ekonomi Islam, 7(03), 1573–1580. https://doi.org/10.29040/jiei.v7i3.2795
Li, J., Hong, Z., Yu, L., Zhang, C., & Ren, J. (2024). Do OPEC+ policies help predict the oil price: A novel news-based predictor. Heliyon, 10(14), e34437. https://doi.org/10.1016/j.heliyon.2024.e34437 DOI: https://doi.org/10.1016/j.heliyon.2024.e34437
Mottaleb, K. A., Kruseman, G., & Snapp, S. (2022). Potential impacts of Ukraine-Russia armed conflict on global wheat food security: A quantitative exploration. Global Food Security, 35(April), 100659. https://doi.org/10.1016/j.gfs.2022.100659 DOI: https://doi.org/10.1016/j.gfs.2022.100659
Nasir, J., Aamir, M., Haq, Z. U., Khan, S., Amin, M. Y., & Naeem, M. (2023). A New Approach for Forecasting Crude Oil Prices Based on Stochastic and Deterministic Influences of LMD Using ARIMA and LSTM Models. IEEE Access, 11(February), 14322–14339. https://doi.org/10.1109/ACCESS.2023.3243232 DOI: https://doi.org/10.1109/ACCESS.2023.3243232
Nurlela, S., Fanani, A., & Hani Khaulasari. (2023). Harga Minyak Mentah WTI Menggunakan Metode Fuzzy Time Series Markov Chain. Jurnal Fourier, 12(1), 10–19. https://doi.org/10.14421/fourier.2023.121.10-19 DOI: https://doi.org/10.14421/fourier.2023.121.10-19
Olayungbo, D. O., Zhuparova, A., Al-Faryan, M. A. S., & Ojo, M. S. (2024). Global oil price and stock markets in oil exporting and European countries: Evidence during the Covid-19 and the Russia-Ukraine war. Research in Globalization, 8(February), 100199. https://doi.org/10.1016/j.resglo.2024.100199 DOI: https://doi.org/10.1016/j.resglo.2024.100199
Wang, Z., Liu, S., Wei, Y., & Wang, S. (2023). Estimating the impact of the outbreak of wars on financial assets: Evidence from Russia-Ukraine conflict. Heliyon, 9(11), e21380. https://doi.org/10.1016/j.heliyon.2023.e21380 DOI: https://doi.org/10.1016/j.heliyon.2023.e21380
Yang, Y.-T., Yang, T.-Y., Chen, S.-H., & Tong, C.-V. (2022). Exploring the non-linearity of West Texas Intermediate crude oil price from exchange rate of US dollar and West Texas Intermediate crude oil production. Energy Strategy Reviews, 41(April), 100854. https://doi.org/10.1016/j.esr.2022.100854 DOI: https://doi.org/10.1016/j.esr.2022.100854
Zhang, C., & Zhou, X. (2024). Forecasting value-at-risk of crude oil futures using a hybrid ARIMA-SVR-POT model. Heliyon, 10(1), e23358. https://doi.org/10.1016/j.heliyon.2023.e23358 DOI: https://doi.org/10.1016/j.heliyon.2023.e23358
Zhang, Z., Raza, M. Y., Wang, W., & Sui, L. (2023). Volatility predictability in crude oil futures: Evidence based on OVX, GARCH and stochastic volatility models. Energy Strategy Reviews, 50(September), 101209. https://doi.org/10.1016/j.esr.2023.101209 DOI: https://doi.org/10.1016/j.esr.2023.101209
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tri Lestari, Putri Andriani, Didik Gunawan, Willy Cahyadi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright @2021. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License ( https://creativecommons.org/licenses/by-sa/4.0/)
Journal of Economics and Policy Studies is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.