Prediksi harga minyak mentah WTI dengan menggunakan metode Garch dalam ancaman perang dunia III

Authors

  • Tri Lestari STIE Bina Karya Tebing Tinggi
  • Putri Andriani STIE Bina Karya Tebing Tinggi
  • Didik Gunawan STIE Bina Karya Tebing Tinggi
  • Willy Cahyadi STIE Bina Karya Tebing Tinggi

DOI:

https://doi.org/10.53088/jerps.v5i1.1778

Keywords:

WTI Crude Oil, ARIMA-GARCH, Forecasting, Geopolitical Conflicts

Abstract

This research aims to forecast fluctuations in the price of West Texas Intermediate (WTI) crude oil within the potential threat of World War III by utilizing the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) method. Using daily closing price data of WTI crude oil from January 2022 to March 2025, consisting of 850 observations, this study employs the ARIMA-GARCH model to capture the patterns and volatility of the time series data. Based on the conducted analysis, it is concluded that the ARIMA (2,1,2) and GARCH (1,1) models demonstrate optimal performance, with a MAPE value of 13.71%, indicating a good prediction accuracy level. The forecast for the next two years shows a trend of price increases starting from Q2 2025 through Q4 2027. This research demonstrates how geopolitical tensions, particularly the Russia-Ukraine war and Middle Eastern Conflicts, can affect global oil price volatility while highlighting the GARCH model’s effectiveness in capturing heteroskedasticity in highly fluctuating financial data.

References

Abay, K. A., Breisinger, C., Glauber, J., Kurdi, S., Laborde, D., & Siddig, K. (2023). The Russia-Ukraine war: Implications for global and regional food security and potential policy responses. Global Food Security, 36(February), 100675. https://doi.org/10.1016/j.gfs.2023.100675 DOI: https://doi.org/10.1016/j.gfs.2023.100675

Abys, C., Skakun, S., & Becker-Reshef, I. (2024). Two decades of winter wheat expansion and intensification in Russia. Remote Sensing Applications: Society and Environment, 33(November 2023), 101097. https://doi.org/10.1016/j.rsase.2023.101097 DOI: https://doi.org/10.1016/j.rsase.2023.101097

AL-Rousan, N., AL-Najjar, H., & AL-Najjar, D. (2024). The impact of Russo-Ukrainian war, COVID-19, and oil prices on global food security. Heliyon, 10(8), e29279. https://doi.org/10.1016/j.heliyon.2024.e29279 DOI: https://doi.org/10.1016/j.heliyon.2024.e29279

Amri, I. F., Sari, W., Widyasari, V. A., Nurohmah, N., & Haris, M. Al. (2024). The ARIMA-GARCH Method in Case Study Forecasting the Daily Stock Price Index of PT. Jasa Marga (Persero). Eigen Mathematics Journal, 7(1), 25–33. https://doi.org/10.29303/emj.v7i1.174 DOI: https://doi.org/10.29303/emj.v7i1.174

Beeg, F. A., Paendong, M. S., Mananohas, M. L., & Price, G. (2023). Penerapan Model Arima – Garch Untuk Peramalan Harga Emas Dunia. D’Cartesian: Jurnal Matematika Dan Aplikasi, 13(2), 73–79. https://doi.org/10.35799/dc.13.2.2024.55551 DOI: https://doi.org/10.35799/dc.13.2.2024.55551

Bilal, M., Aamir, M., Abdullah, S., & Khan, F. (2024). Impacts of crude oil market on global economy: Evidence from the Ukraine-Russia conflict via fuzzy models. Heliyon, 10(1), e23874. https://doi.org/10.1016/j.heliyon.2023.e23874 DOI: https://doi.org/10.1016/j.heliyon.2023.e23874

Dano, D. (2022). Analisis Dampak Konflik Rusia–Ukraina Terhadap Harga Bahan Bakar Minyak Indonesia. CENDEKIA: Jurnal Ilmu Pengetahuan, 2(3), 261–269. https://doi.org/10.51878/cendekia.v2i3.1494 DOI: https://doi.org/10.51878/cendekia.v2i3.1494

Famuji, A., Sriliana, I., & Agwil, W. (2024). Penerapan model asymmetric power autoregressive conditional heteroscedasticity (aparch) terhadap harga minyak mentah dunia. Jurnal Gaussian, 13(1), 99–109. https://doi.org/10.14710/j.gauss.13.1.99-109 DOI: https://doi.org/10.14710/j.gauss.13.1.99-109

Gunawan, D., & Darwin. (2023). Peramalan Harga Saham Syariah PT. Unilever Indonesia Tbk menggunakan Garch. Krigan: Journal of Management and Sharia Business, 1(2), 88–101. https://doi.org/10.30983/krigan.v1i2.7976

Gunawan, D., & Febrianti, I. (2023). Ethereum Value Forecasting Model using Autoregressive Integrated Moving Average (ARIMA). International Journal of Advances in Social Sciences and Humanities, 2(1), 29–35. https://doi.org/10.56225/ijassh.v2i1.151 DOI: https://doi.org/10.56225/ijassh.v2i1.151

Haque, M. I., & Shaik, A. R. S. (2021). Predicting crude oil prices during a pandemic: A comparison of arima and garch models. Montenegrin Journal of Economics, 17(1), 197–207. https://doi.org/10.14254/1800-5845/2021.17-1.15 DOI: https://doi.org/10.14254/1800-5845/2021.17-1.15

Iqbal, M., & Ningsih, N. W. (2021). Prediksi Harga Saham Harian PT BTPN Syariah Tbk Menggunakan Model Arima dan Model Garch. Jurnal Ilmiah Ekonomi Islam, 7(03), 1573–1580. https://doi.org/10.29040/jiei.v7i3.2795

Li, J., Hong, Z., Yu, L., Zhang, C., & Ren, J. (2024). Do OPEC+ policies help predict the oil price: A novel news-based predictor. Heliyon, 10(14), e34437. https://doi.org/10.1016/j.heliyon.2024.e34437 DOI: https://doi.org/10.1016/j.heliyon.2024.e34437

Mottaleb, K. A., Kruseman, G., & Snapp, S. (2022). Potential impacts of Ukraine-Russia armed conflict on global wheat food security: A quantitative exploration. Global Food Security, 35(April), 100659. https://doi.org/10.1016/j.gfs.2022.100659 DOI: https://doi.org/10.1016/j.gfs.2022.100659

Nasir, J., Aamir, M., Haq, Z. U., Khan, S., Amin, M. Y., & Naeem, M. (2023). A New Approach for Forecasting Crude Oil Prices Based on Stochastic and Deterministic Influences of LMD Using ARIMA and LSTM Models. IEEE Access, 11(February), 14322–14339. https://doi.org/10.1109/ACCESS.2023.3243232 DOI: https://doi.org/10.1109/ACCESS.2023.3243232

Nurlela, S., Fanani, A., & Hani Khaulasari. (2023). Harga Minyak Mentah WTI Menggunakan Metode Fuzzy Time Series Markov Chain. Jurnal Fourier, 12(1), 10–19. https://doi.org/10.14421/fourier.2023.121.10-19 DOI: https://doi.org/10.14421/fourier.2023.121.10-19

Olayungbo, D. O., Zhuparova, A., Al-Faryan, M. A. S., & Ojo, M. S. (2024). Global oil price and stock markets in oil exporting and European countries: Evidence during the Covid-19 and the Russia-Ukraine war. Research in Globalization, 8(February), 100199. https://doi.org/10.1016/j.resglo.2024.100199 DOI: https://doi.org/10.1016/j.resglo.2024.100199

Wang, Z., Liu, S., Wei, Y., & Wang, S. (2023). Estimating the impact of the outbreak of wars on financial assets: Evidence from Russia-Ukraine conflict. Heliyon, 9(11), e21380. https://doi.org/10.1016/j.heliyon.2023.e21380 DOI: https://doi.org/10.1016/j.heliyon.2023.e21380

Yang, Y.-T., Yang, T.-Y., Chen, S.-H., & Tong, C.-V. (2022). Exploring the non-linearity of West Texas Intermediate crude oil price from exchange rate of US dollar and West Texas Intermediate crude oil production. Energy Strategy Reviews, 41(April), 100854. https://doi.org/10.1016/j.esr.2022.100854 DOI: https://doi.org/10.1016/j.esr.2022.100854

Zhang, C., & Zhou, X. (2024). Forecasting value-at-risk of crude oil futures using a hybrid ARIMA-SVR-POT model. Heliyon, 10(1), e23358. https://doi.org/10.1016/j.heliyon.2023.e23358 DOI: https://doi.org/10.1016/j.heliyon.2023.e23358

Zhang, Z., Raza, M. Y., Wang, W., & Sui, L. (2023). Volatility predictability in crude oil futures: Evidence based on OVX, GARCH and stochastic volatility models. Energy Strategy Reviews, 50(September), 101209. https://doi.org/10.1016/j.esr.2023.101209 DOI: https://doi.org/10.1016/j.esr.2023.101209

Downloads

Published

2025-04-30

How to Cite

Lestari, T., Andriani, P., Gunawan, D., & Cahyadi, W. (2025). Prediksi harga minyak mentah WTI dengan menggunakan metode Garch dalam ancaman perang dunia III. Journal of Economics Research and Policy Studies, 5(1), 185–197. https://doi.org/10.53088/jerps.v5i1.1778